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ON LINEAR VISCOELASTIC RODS

WILLIAM J. SHACK

Department of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts

Abstract—This paper is based on the general thermodynamical theory of a Cosserat continuum developed by
Green and Laws. We present here specific constitutive equations for a linear viscoelastic material. When the form
of the free energy is restricted by certain symmetry conditions, the basic equations separate into four groups. two
for flexure, one for torsion, and one for extension of the rod. Thermal effects occur only in the last group. Flexural
and torsional wave propagation along an infinite rod are considered.

1. INTRODUCTION

THis paper presents a theory of a one dimensional, viscoelastic, Cosserat continuum.
Following Green and Laws [1], we shall define a rod as a one dimensional Cosserat con-
tinuum. Green and Laws have developed an exact thermodynamical theory of rods, which
is not restricted to small deformations or elastic rods. Of course, a theory of rods can also be
constructed by considering the rod as a three dimensional body. The equations governing
the rod are then obtained from the three dimensional equations by introducing assumption
or expansions based on the “thinness’” of the rod. Some results which show that the
Cosserat theory is a natural first approximation to the three dimensional problem have
recently been given by Green, Laws and Naghdi [3]. In Section 5 of this zaper, we shall
briefly discuss how solutions from the Cosserat theory of rods can be compared with
corresponding exact solutions from the three dimensional theory of linear viscoelasticity.

Recently Green, Laws and Naghdi [2] have used the basic theory of [1] to derive a linear
theory of straight elastic rods, although as the authors note their work could be readily
extended to the case where the rod has an initial curvature.

In this paper, using a procedure similar to that of [2], we derive a linear theory of visco-
elastic rods which are initially straight. The basic field equations of the theory, which are
the same as those given in [2], are presented in Section 2. In Section 3 appropriate constitu-
tive equations for viscoelastic rods are discussed. The assumed form of the free energy
function and the discussion of thermodynamical restrictions presented here are analogous
to that of Christensen and Naghdi [8] in their work on the general, linear, three dimensional
viscoelastic solid. We then restrict our attention to the case where the rod possesses certain
symmetries. The resultant equations seem to correspond to those of a rod considered as an
isotropic, viscoelastic, three dimensional member with a cross section which is symmetric
about its principal axes. Under this symmetry restriction the equations of the theory
separate into four groups: Two governing flexure, one governing torsion, and one govern-
ing longitudinal motions. We note that the temperature is present in only the last group.

In Section 5 we use the equations of Sections 3 and 4 to consider the propagation of
flexural waves in an infinite rod. The solution for an arbitrary frequency is very compli-
cated, and explicit results are presented only for the asymptotic wave speeds, attenuation
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and amplitudes as the frequency becomes very large. These results generalize well known
results of Hunter [4]. We also compare the solution of the problem of quasi-static pure
flexure using the Cosserat theory with the solution of the corresponding problem using the
exact solution obtained from the three dimensional theory of linear viscoelasticity.

Finally in Section 6 we consider the torsion equations. We introduce an additional
symmetry restriction on the form of the constitutive equations. Under this restriction our
Cosserat rod now seems to correspond to a right circular cylinder. We then study the
propagation of torsional waves through the Cosserat rod and compare our results with
those of Berry [5], who solved the corresponding three dimensional problem.

2. LINEAR THEORY OF RODS

In the basic theory of rods as developed by Green and Laws [1], a rod is defined to be
a curve (embedded in a Euclidean 3-space) at each point of which there are two assigned
directors. The motion of the rod at time ¢ is then described by the equations

r =r(z,1t), a, = a,(z,1), (2.1)

where r is the position vector of the curve, a (¢ = 1, 2) are the directors and z is a convected
coordinate which defines points on the curve. We also define the base vector a; along the
curve by

or
= -— 2.2
a3 az 5 ( )
and impose the restriction

[a,.a;,25] > 0. (2.3)

In terms of a, and a;, the basic kinematical quantities may be taken as

oa;

a,-j = a,--aj, Kij = aj*% (24)"‘

The initial values of the position vector and the directors are denoted by R, A, and
A,. We assume that the rod is initially straight so that

R = ZA3, A," AJ = 5,'.1', (25)

where A; are independent of z and §;; is the Kronecker delta. We restrict our attention to
the case when the subsequent displacements of the rod are “‘small”. To be consistent we
will also assume that the changes in the thermodynamic variables such as temperature are
also “small’’. More precisely, we assume that

r = ZA3 +8u, ai = Ai+£b,‘, TI = To“l‘g’]—; (2.6)

where T’ is the temperature of the body with value Tj, in the initial undeformed state, and ¢
is a small non-dimensional parameter. All forced and assigned loads are also assumed to
be of O(¢). By neglecting all terms of O(¢?) and higher in the field equations we obtain the

+ Latin indices take the values 1, 2 and 3, and Greek indices the values 1 and 2. Also, repeated indices imply
the usual summation convention.
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linearized field equations. After obtaining the approximate equations, we may formally
set ¢ = 1 in the equations without loss of generality with the understanding that when the
displacements, temperature changes, forces, and assigned forces are expressed in suitable
non-dimensional forms they are to be considered small, i.e. < 1. Since this procedure is
straightforward, only the final results are presented here. Before writing down the basic
equations, however, we note that as a consequence of the linearization all components of
vectors such as r and a; are now referred to the fixed orthonormal base vectors A;, and
hence, there is no need to distinguish between covariant and contravariant components.
It is convenient to define measures of deformation by

Vij = a;;~ 0y,
or in the linearized theory
iy = bij+bj 2.7
Also, by (2.4), and (2.6), , we have
5b,-j 6u,~
Kij = 22’ bsy; = 7 (2.8)

where u; are the components of the displacement vector u = y;A;.

The linearized basic field equations of the theory are given in [2]. Here we quote freely
from [2] and also record additional results appropriate to the linear theory which will be
useful later. The linearized equations of motion are

s ofi=p 29
aZ pli = p atz s ( . )
Tap = Tgas Mgz = Ng, (210)

where p is the initial mass per unit length of the rod, n; are force components, and f; are
the components of the assigned force per unit mass on the rod. The quantities =,; are
defined by

apai

Tai = Pait—5 (2.11)
0z

where p,; are the components of the director forces, and q,; are the sum of the assigned
director force on the rod and the director inertia forces.

Equations (2.10) and (2.11) can be written in a more familiar form if we introduce vectors
m and g defined by

m=A,xp,, g=A,%q,, (2.12)
with components

my = P23, m; = —Ppi3, msz = py12—Pari, (213)

g1 = {423, g2 = —{q13, 83 = 412~ P21-
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It is then easily seen that (2.10) and (2.11) are equivalent to
om,

Fz_—n2+pgl =0,
0
M n—pg, =0, (2.14)
0z

om,

3 =0,

e +p83

and
dpi11

My = +—,
11 Pq11 oz

0p22
= —, 2.1
Ty = Pqdaz2+ iz (2.15)

0
2ny, = 21y = p(qy2 +421)+;3;(sz +p21)

We must also introduce an explicit form for the director inertia terms. If we assume that
the contribution of the directors to the kinetic energy is of the form

%alfll -ﬁ1+%a2é2-é2, (216)
where the coeflicients oy and «, are independent of ¢ and a superposed dot denotes partial
differentiation with respect to time, it follows that

i = lﬂi_aﬂ? (no sum on f), (2.17)

where Iy; are the assigned director forces.
The energy equation appropriate to the linear theory is

. . , _ _ oh
—pA—p(T'S+TS) +pr + 3T 70p +3n4(9p3 +73p) + 313733 + Paiai e 0, (2.18)

where

0yij 0Ky
Y L = -————, ” — ~———, 2‘19
Yi =7 Rai = (2.19)
A is the Helmholtz free energy per unit mass, r is the heat supply per unit mass per unit
time and A is the flux of heat along the rod. To complete the basic equations we postulate
an entropy production inequality of the form
oh h T

T'S—pr4+————-—>0. )
o pr+0z T, 3 >0 (2.20)

If we use (2.18) to eliminate pr from (2.20), we obtain the reduced entropy inequality

oT

—p(A+T5) +%”ap)"aﬁ +117np(33ﬂ3 +735) + 313733 + Paikai — T a7 =0 (2.21)
0
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3. CONSTITUTIVE EQUATIONS FOR A VISCOELASTIC ROD

To obtain a complete theory we must specify appropriate constitutive equations for
the free energy A, the force vector n;, the director forces p,;, the quantities =4, the entropy
S, and the heat flux h. Since we wish to consider the case where n;, p,;, etc. are linear func-
tionals of the kinematical and thermal histories, it is sufficient to consider a constitutive
equation for the free energy of the form

t

pA = pAo+ Jt Dift -1y dr+ f AMt—1)T(r)dt

— a0

+3 J_ _[_ Gijlt — 7, t =)y ()pualn) dz dn

+ J_ ° f_ " D;t—1, t_'l)')}i,{T)T(T) dzdn

+3 f_ f_ m(t—rt,t— ﬂ)T(t)T(n) drdn+ f H(1— 1)k, dt (3.1)
+% f_ f_ Haiﬂj(t —1,t— n)kai(T)kﬁ,{YI) dr dy

+ J_ . I_ } Fuplt—1,t— Mk (TP p(m) dt dn

+ J_ . f_ . rai(t —T,t— n)kai(T)T(ﬂ) dr d’?a

where as we recall a superposed dot denotes partial differentiation with respect to the time
variable 7. Without loss of generality, we may assume that

Gijult—1,t—n) = Gt —n,t—1),
mit—t,t—n) = mt—n,t—1), (3.2)
H,gft—1,t—n) = Hgjpllt —n,t—1),

and that the kernel functions in (3.1) vanish for negative values of their arguments.
The heat flux is assumed to be linear in the history (0776z)(7)

h=— J ' k(z—r)%;(r) dz. (3.3)

It is not necessary to record here specific constitutive equations for n;, p,;, 1,5 and §; it
suffices to assume that they are linear integral operators over the histories of 7;;, k,; and
T, but that they are independent of the temperature gradient.
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Substituting from (3.1) into the reduced entropy inequality (2.20), we obtain
[— pS—A(0) - f m(0, t — ) T(z) dt
t - t
- f_ 3 Ot —7,0)p{r)dr~ J_ 3 It —1, 0)k (1) dr] T()
+ [naﬂ —2D,4(0)—2 f : 3 Goput(0, t —T)Ppi(7) dt
-2 f : @400, t—7)T(r)dr -2 f ' Fip(t— 1, 0K y(t) dt ]y‘a,,(t)
+ [2n,, —4 ji G300, t —T)py(r) dr—4 Jt ®43(0, t —7)T(z) dr
4 f _  Fupalt=, 0ice) dr — 4D,,3(0)] 333(0)

1
+| n3—2D33(0)—-2 f G330, t — T)ji(7) dt (34)

~2 ft @330, t—7)T(t) dr—2 J" Fli3s(t— 1, 0)K 4(2) df]i’as(t)

+ Fpai - Hai(o) - J.r Haiﬂj(o, t— T)’-Cﬁj(r) dt

- f Fal]k( T)y_]k T) dr— J- Fal(O - 1")’1-‘(1:) dT] Kau( )
t0
—-A-— f D;f{t—1)y;{r)dr— f a—tl(t ~1)T(r)dr
h oT

— f«w a—tHai(t~r)xa,(r) dr—?o a‘(l) >0,

A= %J iw f iw %Gw(f =T, L= n)i{t)pu(n) dr dy
* f _ f a%‘l’u(t—n t—n)j(0)T () dz dy
zf f *m(t—n ) T() dr d
+3 f_w f » a—tHai,,,(t — 1, t = oD ) d diy (3.5)
" f f Foap{t— 7, t = (@i uln) dt dy

f f Pt — 7, 1~ )@ Tn) dz di,

and we have made use of the symmetry conditions (3.2).
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The inequality (3.4) must hold for arbitrary continuous histories of ;1) Ky(1), T(x).
The integral operators in (3.4) depend smoothly upon the histories, and thus changing the
histories in the neighborhood of the present time T = t produces only a small change in
the value of the integrals. If the present rates could be assigned in a completely arbitrary
manner without changing the values of the coefficients of the present rates, then, clearly,
in order that the inequality be satisfied it would be necessary that the coefficients vanish
identically. It can be shown that this is also true in the present case. The formal argument is
similar to that of Coleman [6] ; for the interested reader the details are given in an Appendix.

The vanishing of the coefficients then yields

pS = —A0)— J. : m(0, t—1)T(r) dt— Ji O, {t—7,0)p;(r)dr - f: It —1, 0)k (1) dr,

(3.6)
ﬂaﬁ = 2[Daﬂ(o) + J Gaﬂ“(o, t— T)'}"kl(‘[) dr + j ‘Daﬁ(O, t— ‘L') T(T) dz
, o o (3.7)
+ f F gt — 1, 0)c,(7) d‘t],
n = 2[Dk3(0)+ I Gi3mn(0, t = T)malt) dT+ f 0,300, t—1)T(x) dr
, o o (3.8)
+ J Fopa(t — 1, 0)k,(1) df],
pu=HaO+ [ HapfO 1=yt drt | Fupl0, 1= alo)de
.7 e (3.9)
+ f I,(0, t—7)T(r)dr.
The inequality (3.4) then reduces to
-~ f’ 2D~(t—‘1:)'-{1:) dr— J‘t ﬁl(t—t) T(r)dz
et "
to9 h oT (310
- J—w EH,,-([— ‘L')fC,i(T) dT —A ——,ITO 5; 2 0.

The first three terms in (3.10) are of first order in the rate histories, while the remaining
terms are of second order. Hence, to satisfy (3.10), we must have

h oT
A-=T s ,
T 3% 2O (3.11)

and

- f_ %Du{t-r))?i,{r) dr— J._ g,l(t—r)’f(t) dr— f_ %H,,-(t—r)fc,,{r) dr > 0.
" ” " (3.12)
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As 1), T(z) and k(1) can be chosen arbitrarily, we must have

-

‘=0 Siun=o
I ot T

¢

é-tHa,-(t) = 0. (3.13)

Since (3.11) must hold for homogeneous temperature distributions, we also have
-A =0 (3.14)
From (3.11), we see that the familiar condition

)
2T 5o (3.15)
ax

does not necessarily follow from the entropy production inequality for a viscoelastic rod.
However, to satisfy (3.11) it is sufficient that (3.15) be valid. If we restrict our attention to a
class of materials for which (3.15) holds, it is easily seen that the constitutive equation (3.3)

must reduce to

h= —Ka—T, (3.16)
Ox

where x (>0) is a constant. The arguments leading to (3.6)~3.9) and (3.13) and (3.16) are
very similar to those used by Christiansen and Naghdi [8] in their work on linear visco-
elastic solids.

Substituting from (3.1) and (3.6-9) into the energy equation (2.17) and neglecting second
order terms, we obtain a linearized energy equation

oh
—pTOS+pr—a=O (3.17)

which can be used to determine the temperature.

4. SYMMETRIES

We restrict our attention now to a rod whose Helmholtz function is invariant under the

transformations:
X - +X, A, - +A,, A, o +A,, 4.1

where we may take any combination of + and —. It is a straightforward, but tedious,
calculation to find the form of the kernel functions under these restrictions. We present
here only the final results. The free energy A4 is now given by

poA = podg—poSoT+ f f 810712011200+ 38207250251 + 3830515 asn)

+3840)711(0) 1 1(1) +2850)722(00722(m) + 386 ()P33(0)73301) + 480711 (27 22(0)
+922(0)91 1 ()] + 28807 22(0)733(1) + 733(D)P220m)] + 420 ()71 1(T)733(m)

+ 7330711 ]+ 301 (711D +3020)722(1) + 303()pa3(D] T ) +3mO)T(0)T(p) (4.2)
+3h (R (D0 1 (1) +3ho()[K 1 1 (202 2(m) + Koz 2(D)R 1 1 (1)) + Fha (e 2 (D) 22()
+3ha( ey 2(2Ve1 207) +5hs ()R  2(0)ez (1) + gy (D) 1 2(1)] + 36 (K51 (TR 5 1 ()

+ 30401 3(T)K 1 3(1) +3hs()K23(0)K23(n)} d dn,
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where we have used the notation

f(’) Ef(t—‘l’,t"r]),

and we have set —A(0) = pS, and assumed that D;{0) = 0, i.e. the rod is free of initial

stresses.
The constitutive equations (3.6), (3.7), (3.8) and (3.9) become

my = fiwgao,r—r)v'u(r)dr,
m= | e
m= [ 1860, t= 05330+ 8400, = N2a)+ 8001~ (0] b
+ J"_ ) 50, t—1)T(z)dr,
m, = f :m he(0, £ — 1)y 3(1) .
my = — f:w 10, t— 1), (1) dr,
my = [ =)0, =610~ (s =) 0. — (] .
Pt = fw [14(0, £ — )y (1) + B0, £ = Do) dt,
Pz = | im [h3(0, £ — )22(0)+ hal0, £ — Dy o(1)] i,
Pratpan = [ Hhat 0. 6= 01200+ e +h) 0.t = s .
mir = [ L8000+ 10,1 = 053al0)+ 8500, 1= s
+ f:m 0,00, t—1)T (1) dr,
o2 = [ [840.0= a0+ €100, 1= 07110 + 2400, — (0] &
+ th @50, t—T)T(‘C) dr,

13
My = Mgy = f gl(oa t—‘f)'}"lz(f) dT,

4.3)

(4.4)

4.5)

(4.6)
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and

t

¢ 1
;ﬂ=wrf mm~ﬂmw7f [o4(t =7, 0)f1,(2)

4.7
+ @2t — 7, 0)y22(7) + @3(t — 7, 0)35(0)] d.

The quantity A is now given by

A= f J‘ {2 5t81(a)7’12( )sz(’?)+2 6tg2{ J23(t )723(7!)+2 atg_»,( Y 13(t)a3ln)
+7 3,820l + 7 5 8s(Waa(eaaln) 5 ‘5;86(’)?33(7)?33(")

10 10 1¢
+§ 5787(,)}"1 1(7)5’22(?7)‘*'5 5;88(,)}"22(1?)'}"33(??)“*5 é‘lgg(,)?x {7330

10 10 10
+[§ Ewl()m(r)'%— 3% @2, )?22(7)‘*' 35 < @3, )733(‘5)] T(n)

1o . i1d é
+5 am{,)T(t)T(nHi 3O (@R )+ =Rk (2635()

1 10 0

2 Y = hsl, )Kzz(T)Kzz(ﬂ)+ h4(,)f€12(1)"‘12(’7)+5”th5(,)"<12(f)k21('7)

1 d h , , 10 Py , ded
2 7 hel, )sz(f)’cn(ﬂ)‘*' 7(,)’(«13(15)?‘13(’7)'?“2‘ % s()K23(1)K23(n)p drdn.

Inspection of the equations of motion (2.9), (2.14) and (2.15), the energy equation (2.18)
and the constitutive equations (4.3-7) shows that they can be separated into four distinct
groups: two governing flexure, one governing torsion and one governing longitudinal
motions. Thermal effects and the energy equation need only be considered with the equa-
tions governing longitudinal motions.

5. THE FLEXURE EQUATIONS

The two sets of equations governing the flexure of the rod are

6n1 - 6 Uy 6m2 62b13
o +ofi = p—5 22 “5; —pliz+poy ——= 2 =0
m=f £5(0, £~ )ya(e) d, nh=-f b, =Dk dr, (1)

ob ou
V13 = b3 +b3y, Kiz = 13 3= -,
0x 0x
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and
on, 0*u, om, 0%by;
E"‘sz =P —a—x——nz"rplza po2—a7 = 0,
t t
m= [ eO-m@d m= [ k-0 (52)
5b23 auz

=bys+bsy, Koz = —22, by =—
Y23 23 32 23 ox 32 %

As a simple application of these equations we may discuss the propagation of flexural
waves along an infinite rod.t To simplify our discussion we introduce the notation

G(s) = £2(0,5),  H(s) = hg(0, ). (5.3)

Assuming that the waves are of the forms

_ x
u,=Ue “"cosw(t——),
c

(5.9)
- X e s X
b,3 = Bye “"cosw(t—z)+32e ""smw(t—z),

on substitution of (5.4) into (5.2)5 ¢ 7, we find

=

n, = l:—w(Bl"ﬂU)Gc+w(Bz +CC—0U)Gs] e **sin w(t__)

2]

+ [w(Bl —uU)Gs+w(Bz +?U)GC:I e ** cos w(t—)c—c),

X
t_‘)
c

+[—w(y31 +%32)Hc+w( - uB, +%BI)H5] e ** cos a)(t—f),
c

(5.5)
m; = [w(uBl +$Bz)Hc+w( ~uB, +§B,)Hs] e *sinw

where

G(w) = f ? G(u) sin wu du, Glw) = on G(u) cos wu du, (5.6)
0 0

and H{w) and H(w) are similarly defined as the Fourier sine and cosine transforms of
H(u). Using (5.5), (5.4) and the equations of motion (5.2), ,, we obtain a set of homogeneous

+ Throughout this Section, we restrict our attentions to the case when «,.a,, p, g,, 82, etc. are independent
of z.
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equations to determine U, B, and B,
[——2;;%6& (gz—%)(?s%—pm] U+ [ ~gGs+§Gc}Bi - [#GC%'%GS B, =0,

, -
{2;1 G +(,u -—?—)GC}UW—-[;!GC+§GS]BI+[~?Gc+ﬂG3 B, =0,
, -
[,u(}s——%}(}f]U+[quS—Z;;?HC-—%HS—GS-FpaZw B,
C
N (5.7

2
+[2y§H5+y2HC—%HC—GC B, =0,

, -
[y(}s—ch]U+[~2ngs+%H¢—y2Hc~Gs B,

2
+ {—-%Hs+y2Hs—2g§Hc~—G,+pazw B, =0.

These equations will determine y, ¢ and the direction of the vector {U, By, B,} as
functions of the frequency w. The solution for an arbitrary value of the frequency is quite
complex, and we will restrict our attention to the asymptotic behavior of the solution as
the frequency becomes very large. If G(u) and H{u) are sufficiently smooth, it is well known
(see, e.g. Lighthill [7]) that

Go )~9@-@+...‘ Gw )~-—§@ “o, . (5.8)
w C!) &) Ct)

with similar expansions for H{w) and H {w). We assume that U, B, B,, p and ¢ have
asymptotic expansions of the form

u b
U~u0+—5‘+..., By~ b+t LI

(5.9)

b ¢
Bz~§;zg+~"i+ ;ze+“+ c~c§+g§+.,..

Substituting (5.8) and (5.9) into (5.7), and then investigating the conditions that non-trivial
solutions exist, we find two modes of propagation for flexural waves. In the first,

G(0) G(0)
2= = e 0, big =bys =0, g
st} P Ho 2¢5G(0) Ho # 16 20 = 0. (5.10)
while in the second
, HO H(0)
CG = * ["0 = +
oz 2coHO)

g = 0, bl() = 0, 4‘520 -'5é 0. (51])

These relations generalize well known results for extensional waves in a one dimensional
visco-clastic medium (see, e.g. Hunter {4}}.

Our developments here rest on the initial postulates of a balance of energy and an
entropy inequality. For a curve with assigned directors embedded in a Euclidean 3-space
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the resulting equations in Sections 2 and 3 are exact and aside from linearization involve no
approximations. However, the equations given here could be obtained from a three dimen-
sional theory of rods after suitable approximations are made. A d1scuss1on of the kind of
approximation necessary is given in [3].

To one familiar with classical theories of rods, the form of our equations is quite sugges-
tive, and we will present here a few rather intuitive ideas concerning the connection between
the two theories.

A rod as a three dimensional body may be regarded as the Cartesian product of its line
of centroids and its cross section. Because ;&:od is a ““thin” body, we can constrain the cross
section to undergo only homogeneous deformations. The homogeneous deformation of
the cross section is then determined by the motion of two independent vectors. Thus in the
model of the Cosserat curve, the two directors can serve to describe the homogeneous
deformations of the cross section. Since any two independent vectors uniquely determine a
homogeneous deformation, we may choose to take the directors along the principal axes
of inertia of the cross section.

These ideas will be sufficient to permit us to compare the results of the Cosserat theory
with solutions from the theory of linear viscoelasticity for an isotropic three dimensional
rod. We consider first the case of isothermal, quasi-static pure flexure. Using the usual
quasi-static “‘correspondence principle” between elastic and viscoelastic solutions, the
solution of the viscoelastic problem in the Laplace transform plane is easily obtained from
the corresponding elastic solution. We consider a straight, isotropic prismatic rod and
introduce a Cartesian coordinate system (x, y, z) where the z axis coincides with the line of

centroids of the cross section, and the x and y axes are taken along the principal axes of the
cross section. Consider now the problem of pure flexure of such a body. If 5;; denotes the
transform of the stress tensor, the only non-zero component of the stress is

6’33 = (XX+By, (512)

where o and B are constants. The three dimensional displacement vector is denoted by u*
and its transform is given by

vl _1 52
at SE(zcxx + fixy ay ) E ,
¥ — _ v l 2_1 2 __B 13
u;z sE(axy+2ﬂy 2ﬂx s E s (5 )

_ 1
uf = ;E(ax +By)z,

where v and E are defined in terms of G,(¢t), the relaxation function in shear, and G,(t), the
relaxation function in isotropic compression, by

1_26:46,  ;_ G=G, (5.14)
E~ 73G,6, 26,406,
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The transforms of the moments acting across any section are then

_ = OCud
my = B]xx = —SEIxx ) 2
Z7 |xy=0
_ s 0%t
m, = —otIyy = SEIyy_a“Z R
z x.y=0

where I, and I,, are moments of inertia about the x and y axes respectively.
Taking the transforms of (5.1) and (5.2)t we easily obtain the equations

ob oil
iy =0, iy = —sh, 13, bys+bsy =0, by, = s
oz 0z
and
_ _ b3 Ol
fi, =0, m; = Sha , 523+532 =0, 532 =
0z 0z
Thus
_ o*u _ i
m; = _sﬁg—a;”-zz‘, m, = 557—6‘271,

and comparing these results with (5.15), we obtain

};8 = EIXX’ h7 = EIyy.

6. TORSION

The equations governing torsional motion of the rod are

om 0%b,, b,
FZ}‘*'P(IIZ“IZI) = p(dl atzl — 0[21 ’

a( + ) ézb 62b
_pllézgﬂ*+p(llz+121)—p(a17t;£+a27§l =272,

s = f [(h — h5)(O. £ —T)ie () (hg — h)(0, £ — gy ()] di,
Pi2+P2 = f_ [(he +hs)(0, t — D)y 4(T) + (h + )0, t — )k, (7)) d1,

t
My = f g1(0, t —1)j12(v) d1,

ob ob
6)1(2’ K1 = ?’%’ V12 = bia+ba,.

Kiz2 =

+ We assume u(t) and b;(r) vanishon —oc < 1 < 0.

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(6.1)
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We restrict our attention here to the case when the free energy and kinetic energy are

invariant under the transformations
Ay > A,, A, > AL
This restriction implies that
oy = oy, hy = hg.
Under these conditions, we seek solutions of (6.1) with

M2=0, by = bhx)e

Then, if the assigned loads are assumed to vanish, equations (6.1) reduce to

om )
2 < —paw?bt, e,
0z
db*
ms; = 2H1 12 lwt,
dz

where
o= 200y —20,,

H (0, u) = hy(0, u)— hs(0, u),

A, = iwj H,(0,u)e™ " du,
V]
Combining (6.5a, b), we obtain
d2bx
dz;2 a’bt: = 0.
where
, _ paw?
= —2?1.
If we take b¥,(0) = 0, the solution of (6.7) is
b¥, = bsingz.
The torque necessary to maintain this deformation is
2
my=b Y cos qz €',

6.2)

(6.3)

(6.4)

(6.5

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

This result may be compared with Berry’s [5] result for the torsional vibrations of a
circular cylinder obtained from the three dimensional theory. With some changes in
notation, Berry’s expression for the torque necessary to maintain sinusoidal oscillation is

2 .2 2
D cos Az, A2 i

m3=bp

2

27 = 2aioG (iw)]

(6.11)
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where a is the radius of the cylinder. The tangential displacement of points in the cross
section is given by
uy = brsin gz ', (6.12)

Thus, by, can be interpreted as the rotation of a radial line element in the cross section.
Equations (6.11) and (6.10) are equivalent if
H(iw) = 1I1.G(iw), (6.13)

where I, is the polar moment of inertia of the cross section.

7. LONGITUDINAL MOTIONS

In the theory employed in this paper, thermal effects only arise in the case of extensional
motion of the rod. We restrict our attention to the case when the heat flux is given by
(3.19). Then, the equations governing the motion are

on; %u;
—6;+Pf3 = Phatz ,
op 2%b
Ty = a;l'*'ﬂ(ln—“x——“atz“),

%b
Ty = Tx_+p(122_a2—(?-t—§_2)’

. oh
—pT, ——=0
pToS +pr 7 = O

ny = f_ (26(0, t —1)733(7) + ga(0, t — 1)722(7) + go(0, t — T}y 1 4(2)
—7)T(0)] d,
“:‘Ps(OJ 7)T(7)]dt )
P11 = J“ [A1(0, t — )& 1 1(T) + 12(0, t — T)K 2 5(7)] d,

P = [ D0 1= aale) o0, 0= s (] .

Ty = J‘* (8400, 1 — )11 (1) + g+(0, t — T)22(7) + go(0, t — T}y 33(1)
+¢,0, t—1)T(z)] dr,
Ty = f_ [g5(0, t —1)p22(7) + 840, £t — )71 (1) + g3(0, t — 1)733(7)

+¢,(0, t — 1) T(z)] dr,

Ous by, by,
ax’ Kyp = Ky = ——
X

Yy = 2b“’ Y2z = 2b223 Y3z = 2 ox Ox
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APPENDIX
The inequality (3.4) can be written in a more revealing form if we introduce the vectors
= (1 .i'a ’eaiv T)7
n 3Yij (Al)
r = (naﬂ, n;, kai’ *pS’)

Then the constitutive hypothesis for n;, p,;, m,5 and S’ in terms of a matrix kernel func-
tion P(7) and a constant vector I'y is

F=Ty+ j‘r P(t — tm(7) dr. (A2)

By introducing appropriate matrix kernel functions G(s, ) and H(z) in (3.1) we can
write pA in the form:
. ! to
pA = [H(0)+J‘ G(0,t —m(7) dr]n(t)+J. é_tH(t_T)n(T) dz

t t N (A3)
+f J. %G(t—r,t——s)+j f %G{t—r,t—s)n(t)q(s)dtds.
The inequality (3.4) for processes with (67/02)(t) = 0 then becomes
{1" —H(@O)+ ft [P(t —7)—G(0, t — 7)n(z) dt} 1(7)
- (A4)

_J.:wa%H(t_r)“(t)dr—Jtm fing(t~r,t—SM(rM(s)dr ds > 0.

We will assume that n(1), (6/0t)H(z), (3/0t)G(x, s), and (0/0s)G{z, s) are continuous (these
assumptions have already been used when differentiating under the integral sign to find
pA). Typical terms in (A4) are of the form

Jt o(t—tm(r) dr, J‘: Jt Y(t—rt,t—smitm(s)dr ds (AS)
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where @ and W are continuous functions. If 5g(7) is some specified, continuous history and

ifa is an arbitrary vector, then given any ¢ > 0 we can find a continuous history 1(t) such
that 1)(t) = « and

< &,

” f_ ot —tm(t)dr— f o(t— i) dr
(A6)

< &

”J.i fiw Yt~ t—sm(tm(s)dr ds— f:m fiw Y(t — 1, t — si(7)ii(s) dz ds

The norm in (A6) is the usual vector or tensor norm; i.e. if V is a vector ||V| = [VV]!/2,
if A is a tensor, then JA| = tr[AAT]}/2,
For example, consider

fin)=%Hr —-o<t<t-06

(A7)
T—t+0

= n(t—5)+[a—n(t—5)l[~—5——] - 1=6<1<t

Then

H j o(t—Tm(z) dr— f o(t—ii(r) d

' —t45
= f _6w(t—-f){n(r)—n(t—é)—[a~n(t—5][r ;+} de]l < OGT + [])é,

where @ = sup|@(t—1)| and I' = sup|n(1)|| on some sufficiently large interval containing
(t — 6, t). Similarly

< W[ +2r + [Ja]))?16%, (A9)

U:aofiww(t_r’t_SM(Tm(S)drds

where ¥ = sup|Y(t—1,1—5s)l|. By choosing & sufficiently small we obtain our desired

result.

Consider now the inequality (A4) for a given history n(t). Choose another history #(7)
with f}(t) = &, a being an arbitrary vector. This history must also satisfy the inequality so
that

{r0~H(0)+ fﬂ [P(t—r)—G(O,t—r)]ﬁ(r)dr}a
” (A10)

t t '
[ Zne-vioae- [ [ Lou—ri-snonsdrdsz 0
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Adding and subtracting terms in (A10) we obtain:
t

{J.i [Pt —7)— G(0, t — )] [ii(t) —n(1)] df} o= f

—®

2 B - i) -a(o dr
t
- ' | 2 Gl 1= )RS~ e ds
e , (Al1)
+ {I‘O —~H(0)+ f [P(t—1)— G0, t — 1) I(7) dr} .

_ f:w%}{(t_rh(r)dr_ J.im ‘fing(t—t,t—s)q(t)q(s)dr ds = 0.

However, using (A6) we see that by choosing 1) properly the first three terms in (A11)
can be made arbitrarily small, and hence if the inequality is to hold we must have

{l"o —H(@O)+ f [P(t—1)— G0, t —1)In(7) d‘t} o

C Coa (A12)
+ f EH(t —mm(r)dz + j f &G(t —1,t—smitm(s)drds > 0.
Since a is arbitrary and () is any continuous history, (A12) implies that
I = H(0), (A13)
and
P(t—1) = G(O,t—1). (A14)

The inequality (A4) then reduces to

- f:wa%H(t-—t)n(r)dr— thJ‘iw%G(t—r,t—s)n(r)q(s)dr ds>0. (A15)

Let 5*(t) = fn(z) where B is an arbitrary scalar. The inequality (A15) must still be satisfied
for this new history so that

t t t
—BJ- (%H(t—r)n(r) dr——ﬁzf j (%G(t—r, t—smitmis)dcds = 0. (A16)
In order that (A16) be satisfied, we must have

F
ZH(—1) =0, (A17)

and

J" J' %G{t—r,t—s)q(r)n(s)dtds>0. (A18)
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Our original inequality (3.4) in view of (A13), (A14) and (A17) reduces to

t t A h &T
~ fﬁmj“méG(t—r,t—s)q(r)n(s)dtds—?o(ETZ20. (A19)

If we revert to our usual index notation, (A13) and (A14) imply (3.6), (3.7), (3.8), (3.9) and
(3.10).

(Received |7 February 1969 ; revised 4 June 1969)

AbcrpakT—HacToswas pabota ocHoBaHa Ha obLuelt TEpMOaAMHAMMYECKOH Teopun KOHTHHYYMa Koccepa,
paseuto#t I'punom u JlsscoMm. aroTcs, 3aech, cieupUYHBIE ONPEACIAIOLLNE YPABHEHHS AJIs JIMHEHHOTO
BA3KOyNpyroro Matepuana. Korga ¢opma cBoGogHON 3HEPrHM OrpaHMYeHA HEKOTOPBIMH YCIOBMSMH
CUMMETDHM, OCHOBHbIE YDaBHEHUs Da3ge/IAIOTCA Ha 4YeTbipble IPymnbl, ase Aasa u3ruba, oaHa qa
KPYYEHHS M OJHA IJIA PACTsDKeHMs CTepxHA. Tepmuyeckre 3QQPeKThl BHICTYHAKOT TONBKO B NOCIEAHEH
rpynne. PaccMaTpuBaeTca pacnpefiesieHue BOJIHBL H3ruba M KpyyeHus BAOIb GECKOHEYHOTO CTEPXHS.



